Evaluation of an Early-Warning System for Heat Wave-Related Mortality in Europe: Implications for Sub-seasonal to Seasonal Forecasting and Climate Services
نویسندگان
چکیده
Heat waves have been responsible for more fatalities in Europe over the past decades than any other extreme weather event. However, temperature-related illnesses and deaths are largely preventable. Reliable sub-seasonal-to-seasonal (S2S) climate forecasts of extreme temperatures could allow for better short-to-medium-term resource management within heat-health action plans, to protect vulnerable populations and ensure access to preventive measures well in advance. The objective of this study is to assess the extent to which S2S climate forecasts could be incorporated into heat-health action plans, to support timely public health decision-making ahead of imminent heat wave events in Europe. Forecasts of apparent temperature at different lead times (e.g., 1 day, 4 days, 8 days, up to 3 months) were used in a mortality model to produce probabilistic mortality forecasts up to several months ahead of the 2003 heat wave event in Europe. Results were compared to mortality predictions, inferred using observed apparent temperature data in the mortality model. In general, we found a decreasing transition in skill between excellent predictions when using observed temperature, to predictions with no skill when using forecast temperature with lead times greater than one week. However, even at lead-times up to three months, there were some regions in Spain and the United Kingdom where excess mortality was detected with some certainty. This suggests that in some areas of Europe, there is potential for S2S climate forecasts to be incorporated in localised heat-health action plans. In general, these results show that the performance of this climate service framework is not limited by the mortality model itself, but rather by the predictability of the climate variables, at S2S time scales, over Europe.
منابع مشابه
A stitch in time: improving public health early warning systems for extreme weather events.
Extreme weather events, particularly floods and heat waves, annually affect millions of people and cause billions of dollars of damage. In 2003, in Europe, Canada, and the United States, floods and storms caused 15 deaths and US$2.97 billion in total damages, and the extended heat wave in Europe caused more than 20,000 excess deaths (1); the impacts in developing countries were substantially la...
متن کاملSeasonality and Forecasting of Monthly Broiler Price in Iran
The objective of this study was to model seasonal behavior of broiler price in Iran that can be used to forecast the monthly broiler prices. In this context, the periodic autoregressive (PAR), the seasonal integrated models, and the Box-Jenkins (SARIMA) models were used as the primary nominates for the forecasting model. It was shown that the PAR (q) model could not be considered as an appropri...
متن کاملDetection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains)
.Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains) Abstract One of the most important challenges for the human communities is Global Warming. This vital problem affected by Climate Change and corresponding effects. Thus this article attempted to assess the trend of real climate variables from syno...
متن کاملLong-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)
Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...
متن کاملA NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2016